Krylov Approximation of Linear ODEs with Polynomial Parameterization
نویسندگان
چکیده
We propose a new numerical method to solve linear ordinary differential equations of the type ∂u ∂t (t, ε) = A(ε)u(t, ε), where A : C → C is a matrix polynomial with large and sparse matrix coefficients. The algorithm computes an explicit parameterization of approximations of u(t, ε) such that approximations for many different values of ε and t can be obtained with a very small additional computational effort. The derivation of the algorithm is based on a reformulation of the parameterization as a linear parameter-free ordinary differential equation and on approximating the product of the matrix exponential and a vector with a Krylov method. The Krylov approximation is generated with Arnoldi’s method and the structure of the coefficient matrix turns out to be independent of the truncation parameter so that it can also be interpreted as Arnoldi’s method applied to an infinite dimensional matrix. We prove the superlinear convergence of the algorithm and provide a posteriori error estimates to be used as termination criteria. The behavior of the algorithm is illustrated with examples stemming from spatial discretizations of partial differential equations.
منابع مشابه
A Krylov Subspace Algorithm for Evaluating the Φ-functions Appearing in Exponential Integrators
We develop an algorithm for computing the solution of a large system of linear ordinary differential equations (ODEs) with polynomial inhomogeneity. This is equivalent to computing the action of a certain matrix function on the vector representing the initial condition. The matrix function is a linear combination of the matrix exponential and other functions related to the exponential (the so-c...
متن کاملThe block grade of a block Krylov space
The aim of the paper is to compile and compare basic theoretical facts on Krylov subspaces and block Krylov subspaces. Many Krylov (sub)space methods for solving a linear system Ax = b have the property that in exact computer arithmetic the true solution is found after ν iterations, where ν is the dimension of the largest Krylov subspace generated by A from r0, the residual of the initial appro...
متن کاملBlock Krylov subspace exact time integration of linear ODE systems. Part 1: algorithm description
We propose a time-exact Krylov-subspace-based method for solving linear ODE (ordinary differential equation) systems of the form y ′ = −Ay+g(t), where y(t) is the unknown function. The method consists of two stages. The first stage is an accurate polynomial approximation of the source term g(t), constructed with the help of the truncated SVD (singular value decomposition). The second stage is a...
متن کاملA Krylov subspace method for option pricing
We consider the pricing of financial contracts that are based on two or three underlyings and are modelled using time dependent linear parabolic partial differential equations (PDEs). To provide accurate and efficient numerical approximations to the financial contract’s value, we decompose the numerical solution into two parts. The first part involves the spatial discretization, using finite di...
متن کاملChebyshev Approximation via Polynomial Mappings and the Convergence Behaviour of Krylov Subspace Methods
Abstract. Let φm be a polynomial satisfying some mild conditions. Given a set R ⊂ C, a continuous function f on R and its best approximation p n−1 from Πn−1 with respect to the maximum norm, we show that p ∗ n−1 ◦φm is a best approximation to f ◦ φm on the inverse polynomial image S of R, i.e. φm(S) = R, where the extremal signature is given explicitly. A similar result is presented for constra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Matrix Analysis Applications
دوره 37 شماره
صفحات -
تاریخ انتشار 2016